Adaptive Modeling for Free - Surface Flows ∗

نویسندگان

  • Simona Perotto
  • S. PEROTTO
چکیده

This work represents a first step towards the simulation of the motion of water in a complex hydrodynamic configuration, such as a channel network or a river delta, by means of a suitable “combination” of different mathematical models. In this framework a wide spectrum of space and time scales is involved due to the presence of physical phenomena of different nature. Ideally, moving from a hierarchy of hydrodynamic models, one should solve throughout the whole domain the most complex model (with solution ufine) to accurately describe all the physical features of the problem at hand. In our approach instead, for a user-defined output functional F , we aim to approximate, within a prescribed tolerance τ , the value F(ufine) by means of the quantity F(uadapted), uadapted being the so-called adapted solution solving the simpler models on most of the computational domain while confining the complex ones only on a restricted region. Moving from the simplified setting where only two hydrodynamic models, fine and coarse, are considered, we provide an efficient tool able to automatically select the regions of the domain where the coarse model rather than the fine one are to be solved, while guaranteeing |F(ufine)−F(uadapted)| below the tolerance τ . This goal is achieved via a suitable a posteriori modeling error analysis developed in the framework of a goal-oriented theory. We extend the dual-based approach provided in [Braack and Ern, Multiscale Model Sim. 1 (2003) 221–238], for steady equations to the case of a generic time-dependent problem. Then this analysis is specialized to the case we are interested in, i.e. the free-surface flows simulation, by emphasizing the crucial issue of the time discretization for both the primal and the dual problems. Finally, in the last part of the paper a widespread numerical validation is carried out. Mathematics Subject Classification. 65J15, 65M15, 65M60. Received: October 21, 2004.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Free Surface Flows and Comparison of Symmetry and Real Boundary Conditions at the Free Surface

For implementation of the free surface boundary condition, a new subroutine has been introduced to an existing steady 3-D body fitted code. This code was previously written for steady flow simulation in closed ducts. The algorithm used in this subroutine reduces the instability problem according to the free surface wave generation. For code validation, it was applied to two different open cha...

متن کامل

Numerical Simulation of Free Surface Flows and Comparison of Symmetry and Real Boundary Conditions at the Free Surface

For implementation&#10 of the free surface boundary condition, a new subroutine has been introduced to an existing steady 3-D body fitted code. This code was previously written for steady flow simulation in closed ducts. The algorithm used in this subroutine reduces the instability problem according to the free surface wave generation. For code validation, it was applied to two different open c...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

An Adaptive Finite Element Method for Multiphase Flows with Surface Tension

An adaptive finite element method for solving incompressible steady-state free surfaces flow problems, driven by surface tension, is presented. Eulerian free surface capturing, the pseudo-concentration technique, is used to locate interfaces. This approach adds a transport equation to the Navier-Stokes equations. This system of equations is solved in a coupled manner using stabilized finite ele...

متن کامل

Comparison of Binomial and Power Equations in Radial Non-Darcy Flows in Coarse Porous Media

Analysis of non-laminar flows in coarse alluvial beds has a wide range of applications in various civil engineering, oil and gas, and geology problems. Darcy equation is not valid to analyze transient and turbulent flows, so non-linear equations should be applied. Non-linear equations are classified into power and binomial equations. Binomial equation is more accurate in a wide range of velocit...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006